Nomor 1
Diberikan sebuah persamaan gelombang Y = 0,02 sin (10πt − 2πx) dengan t dalam sekon, Y dan x dalam meter.
Tentukan:
Diberikan sebuah persamaan gelombang Y = 0,02 sin (10πt − 2πx) dengan t dalam sekon, Y dan x dalam meter.
Tentukan:
a. amplitudo gelombang
b. frekuensi sudut gelombang
c. tetapan gelombang
d. cepat rambat gelombang
e. frekuensi gelombang
f. periode gelombang
g. panjang gelombang
h. arah rambat gelombang
i. simpangan gelombang saat t = 1 sekon dan x = 1 m
j. persamaan kecepatan gelombang
k. kecepatan maksimum gelombang
l. persamaan percepatan gelombang
m. nilai mutlak percepatan maksimum
n. sudut fase saat t = 0,1 sekon pada x = 1/3 m
o. fase saat t = 0,1 sekon pada x = 1/3 m
b. frekuensi sudut gelombang
c. tetapan gelombang
d. cepat rambat gelombang
e. frekuensi gelombang
f. periode gelombang
g. panjang gelombang
h. arah rambat gelombang
i. simpangan gelombang saat t = 1 sekon dan x = 1 m
j. persamaan kecepatan gelombang
k. kecepatan maksimum gelombang
l. persamaan percepatan gelombang
m. nilai mutlak percepatan maksimum
n. sudut fase saat t = 0,1 sekon pada x = 1/3 m
o. fase saat t = 0,1 sekon pada x = 1/3 m
Pembahasan :
Bentuk persamaan umum gelombang:
Y = A sin (ωt - kx)
dengan A amplitudo gelombang, ω = 2πf dan k = 2π/λ dengan demikian :
a. A = 0,02 m
b. ω = 10π rad/s
c. k = 2π
d. v = ω/k = 10π/2π = 5 m/s
c. k = 2π
d. v = ω/k = 10π/2π = 5 m/s
e. f = ω/2π = 10π/2π = 5 Hz
f. T = 1/f = 1/ 5 = 0, 2 sekon
g. λ = 2π/k = 2π/2π = 1 m
h. ke arah sumbu x positif
i. Y = 0,02 sin(10 π- 2π) = 0,02 sin(8π) = 0 m
j. v = ω A cos(ωt−kx) = 10π(0,02) cos(10πt−2πx) m/s
k. vmaks = ωA = 10π(0,02) m/s
l. a = −ω2y = −(10π)2 (0,02) sin(10πt − 2πx) m/s2
m. amaks = |−ω2A| = |−(10π)2 (0,02)| m/s2
n. sudut fase θ = (10.π.0,1−2π.(1/3) = 1/3 π = 60o
o. fase φ = 60o/360o = 1/6
j. v = ω A cos(ωt−kx) = 10π(0,02) cos(10πt−2πx) m/s
k. vmaks = ωA = 10π(0,02) m/s
l. a = −ω2y = −(10π)2 (0,02) sin(10πt − 2πx) m/s2
m. amaks = |−ω2A| = |−(10π)2 (0,02)| m/s2
n. sudut fase θ = (10.π.0,1−2π.(1/3) = 1/3 π = 60o
o. fase φ = 60o/360o = 1/6
Nomor 2
Suatu gelombang permukaan air yang frekuensinya 500 Hz merambat dengan kecepatan 350 m/s. tentukan jarak antara dua titik yang berbeda sudut fase 60°!
(Sumber : Soal SPMB)
Suatu gelombang permukaan air yang frekuensinya 500 Hz merambat dengan kecepatan 350 m/s. tentukan jarak antara dua titik yang berbeda sudut fase 60°!
(Sumber : Soal SPMB)
Pembahasan :
Lebih dahulu tentukan besarnya panjang gelombang dimana
Beda fase gelombang antara dua titik yang jaraknya diketahui adalah
Nomor 3
Seutas tali salah satu ujungnya digerakkan naik turun sedangkan ujung lainnya terikat. Persamaan gelombang tali adalah y = 8 sin (0,1π) x cos π (100t - 12) dengan y dan x dalam cm dan t dalam satuan sekon. Tentukan:
Seutas tali salah satu ujungnya digerakkan naik turun sedangkan ujung lainnya terikat. Persamaan gelombang tali adalah y = 8 sin (0,1π) x cos π (100t - 12) dengan y dan x dalam cm dan t dalam satuan sekon. Tentukan:
a. panjang gelombang
b. frekuensi gelombang
c. panjang tali
(Sumber : Soal Ebtanas)
Pembahasan :
Pola dari gelombang stasioner diatas adalah
a. menentukan panjang gelombang
b. menentukan frekuensi gelombang
c. menentukan panjang tali
Nomor 4
Diberikan grafik dari suatu gelombang berjalan seperti gambar di bawah!
Jika jarak P ke Q ditempuh dalam waktu 5 sekon, tentukan persamaan dari gelombang di atas! (Tipikal Soal UN)
Pembahasan :
Bentuk umum persamaan gelombang adalah
atau
atau
dengan perjanjian tanda sebagai berikut :
Tanda Amplitudo (+) jika gerakan pertama ke arah atas
Tanda Amplitudo (-) jika gerakan pertama ke arah bawah
Tanda dalam kurung (+) jika gelombang merambat ke arah sumbu X negatif / ke kiri
Tanda dalam kurung (-) jika gelombang merambat ke arah sumbu X positif / ke kanan
ambil data dari soal panjang gelombang (λ) = 2 meter, dan periode (T) = 5/2 sekon atau frekuensi (f) = 2/5 Hz, masukkan data ke pola misal pola ke 2 yang dipakai didapat
Nomor 5
Seutas kawat bergetar menurut persamaan :
Jarak perut ketiga dari titik x = 0 adalah.....
A. 10 cm
B. 7,5 cm
C. 6,0 cm
D. 5,0 cm
E. 2,5 cm
Sumber Soal : Marthen Kanginan 3A Gejala Gelombang
A. 10 cm
B. 7,5 cm
C. 6,0 cm
D. 5,0 cm
E. 2,5 cm
Sumber Soal : Marthen Kanginan 3A Gejala Gelombang
Pembahasan :
Pola diatas adalah pola untuk persamaan gelombang stasioner ujung tetap atau ujung terikat. Untuk mencari jarak perut atau simpul dari ujung ikatnya, tentukan dulu nilai dari panjang gelombang.
Setelah ketemu panjang gelombang, tinggal masukkan rumus untuk mencari perut ke -3 . Lupa rumusnya,..!?! Atau takut kebalik-balik dengan ujung bebas,..!? Ya sudah tak usah pakai rumus, kita pakai gambar saja seperti di bawah:
Posisi perut ketiga P3 dari ujung tetap A adalah satu seperempat panjang gelombang atau (5/4) λ (Satu gelombang = satu bukit - satu lembah), sehingga nilai X adalah :
X = (5/4) λ = (5/4) x 6 cm = 7,5 cm
Nomor 6Sebuah gelombang transversal memiliki frekuensi sebesar 0,25 Hz. Jika jarak antara dua buah titik yang berurutan pada gelombang yang memiliki fase sama adalah 0,125 m, tentukan cepat rambat gelombang tersebut, nyatakan dalam satuan cm/s!
Pembahasan
Data dari soal:
f = 0,25 Hz
Jarak dua titik yang berurutan dan sefase:
λ = 0, 125 m
ν = .....
ν = λ f
ν = (0,125)(0,25) = 0,03125 m/s = 3,125 cm/s
Nomor 7
Sebuah gelombang transversal memiliki frekuensi sebesar 0,25 Hz. Jika jarak antara dua buah titik yang berurutan pada gelombang yang memiliki fase berlawanan adalah 0,125 m, tentukan cepat rambat gelombang tersebut, nyatakan dalam satuan cm/s!
Pembahasan
Data dari soal:
f = 0,25 Hz
Jarak dua titik yang berurutan dan berlawanan fase:
1/2λ = 0, 125 m → λ = 2 × 0,125 = 0,25 m
ν = .....
ν = λ f
ν = (0,25)(0,25) = 0,0625 m/s = 6,25 cm/s
Nomor 8
Diberikan sebuah persamaan gelombang:
y = 0,05 cos (10t + 2x) meter
Tentukan :
a) Persamaan kecepatan
b) Persamaan percepatan
Pembahasan
( y)
↓ diturunkan
( ν)
↓ diturunkan
( a)
y = 0,05 cos (10t + 2x) meter
Diberikan sebuah persamaan gelombang:
y = 0,05 cos (10t + 2x) meter
Tentukan :
a) Persamaan kecepatan
b) Persamaan percepatan
Pembahasan
( y)
↓ diturunkan
( ν)
↓ diturunkan
( a)
y = 0,05 cos (10t + 2x) meter
Jika y diturunkan, akan diperoleh v :
ν = − (10)(0,05) sin (10t + 2x)
ν = − 0,5 sin (10t + 2x) m/s
ν = − (10)(0,05) sin (10t + 2x)
ν = − 0,5 sin (10t + 2x) m/s
Jika v diturunkan, akan diperoleh a :
a = − (10)(0,5) cos (10t + 2x)
a = − 5 cos (10t + 2x) m/s2
a = − (10)(0,5) cos (10t + 2x)
a = − 5 cos (10t + 2x) m/s2
Artikel Terkait materi ini bisa ditengok:
Soal No. 9
Persamaan simpangan gelombang berjalan y = 10 sin π(0,5t −2x). Jika x dan y dalam meter serta t dalam sekon maka cepat rambat gelombang adalah….
A. 2,00 m.s−1
B. 0,25 m.s−1
C. 0,10 m.s−1
D. 0,02 m.s−1
E. 0,01 m.s−1
(Soal Gelombang - UN Fisika 2009)
Persamaan simpangan gelombang berjalan y = 10 sin π(0,5t −2x). Jika x dan y dalam meter serta t dalam sekon maka cepat rambat gelombang adalah….
A. 2,00 m.s−1
B. 0,25 m.s−1
C. 0,10 m.s−1
D. 0,02 m.s−1
E. 0,01 m.s−1
(Soal Gelombang - UN Fisika 2009)
Pembahasan
Menentukan cepat rambat gelombang dari suatu persamaan simpangan gelombang, bisa dengan beberapa cara, diantaranya:
- mencari frekuensi dan panjang gelombang terlebih dahulu, kemudian menggunakan rumus ν = λ f
- mengambil ω dan k dari persamaan gelombang, kemudian memakai rumus ν = ω / k seperti contoh 1 point d.
- mengambil koefisien t dan koefisien x, kemudian menggunakan ν = koefisien t / koefisien x
Kita ambil cara yang ketiga saja:
Menentukan cepat rambat gelombang dari suatu persamaan simpangan gelombang, bisa dengan beberapa cara, diantaranya:
- mencari frekuensi dan panjang gelombang terlebih dahulu, kemudian menggunakan rumus ν = λ f
- mengambil ω dan k dari persamaan gelombang, kemudian memakai rumus ν = ω / k seperti contoh 1 point d.
- mengambil koefisien t dan koefisien x, kemudian menggunakan ν = koefisien t / koefisien x
Kita ambil cara yang ketiga saja:
Soal No. 10
Sebuah gelombang berjalan di permukaan air memenuhi persamaan y = 0,03 sin 2π (60 t − 2x), y dan x dalam meter dan t dalam sekon. Cepat rambat gelombang tersebut adalah....
A. 15 m.s−1
B. 20 m.s−1
C. 30 m.s−1
D. 45 m.s−1
E. 60 m.s−1
(Soal Gelombang - UN Fisika 2011)
Sebuah gelombang berjalan di permukaan air memenuhi persamaan y = 0,03 sin 2π (60 t − 2x), y dan x dalam meter dan t dalam sekon. Cepat rambat gelombang tersebut adalah....
A. 15 m.s−1
B. 20 m.s−1
C. 30 m.s−1
D. 45 m.s−1
E. 60 m.s−1
(Soal Gelombang - UN Fisika 2011)
Pembahasan
Dengan cara yang sama nomor sebelumnya:
Dengan cara yang sama nomor sebelumnya:
Soal pembahasan tentang gelombang yang lain silahkan dibuka berikut ini.
Soal No. 11
Pada tali yang panjangnya 2 m dan ujungnya terikat pada tiang ditimbulkan gelombang stasioner. Jika terbentuk 5 gelombang penuh, maka letak perut yang ke tiga dihitung dari ujung terikat adalah...
A. 0,10 meter
B. 0,30 meter
C. 0,50 meter
D. 0,60 meter
E. 1,00 meter
(Soal Gelombang Stasioner Ujung Tetap - Ebtanas 1992)
Pada tali yang panjangnya 2 m dan ujungnya terikat pada tiang ditimbulkan gelombang stasioner. Jika terbentuk 5 gelombang penuh, maka letak perut yang ke tiga dihitung dari ujung terikat adalah...
A. 0,10 meter
B. 0,30 meter
C. 0,50 meter
D. 0,60 meter
E. 1,00 meter
(Soal Gelombang Stasioner Ujung Tetap - Ebtanas 1992)
Pembahasan
Terlihat, dalam 2 meter (200 cm) ada 5 gelombang. Jadi untuk 1 gelombangnya, panjangnya adalah
λ = 200 cm/5 = 40 cm.
Perut ketiga, jika dihitung dari ujung ikatnya berjarak 1 gelombang lebih 1/4, atau 5/4 gelombang. Jadi jaraknya adalah:
x = 5/4 × λ
x = 5/4 × 40 cm = 50 cm = 0,5 meter.
Terlihat, dalam 2 meter (200 cm) ada 5 gelombang. Jadi untuk 1 gelombangnya, panjangnya adalah
λ = 200 cm/5 = 40 cm.
Perut ketiga, jika dihitung dari ujung ikatnya berjarak 1 gelombang lebih 1/4, atau 5/4 gelombang. Jadi jaraknya adalah:
x = 5/4 × λ
x = 5/4 × 40 cm = 50 cm = 0,5 meter.
Soal No. 12
Seutas tali digetarkan pada salah satu ujungnya sehingga menghasilkan gelombang seperti gambar.
Jika ujung tali digetarkan selama 0,5 s maka panjang gelombang dan cepat rambat gelombang berturut-turut adalah….(Sampel UN 013)
A. 25 cm dan 100 cm/s
B. 25 cm dan 50 cm/s
C. 50 cm dan 25 cm/s
D. 50 cm dan 100 cm/s
E. 125 cm dan 25 cm/s
Pembahasan
Untuk dua buah gelombang = 50 cm
Jadi satu gelombangnya λ = 50 cm / 2 = 25 cm
Cepat rambat:
50 cm / 0,5 s = 100 cm/s
Seutas tali digetarkan pada salah satu ujungnya sehingga menghasilkan gelombang seperti gambar.
Jika ujung tali digetarkan selama 0,5 s maka panjang gelombang dan cepat rambat gelombang berturut-turut adalah….(Sampel UN 013)
A. 25 cm dan 100 cm/s
B. 25 cm dan 50 cm/s
C. 50 cm dan 25 cm/s
D. 50 cm dan 100 cm/s
E. 125 cm dan 25 cm/s
Pembahasan
Untuk dua buah gelombang = 50 cm
Jadi satu gelombangnya λ = 50 cm / 2 = 25 cm
Cepat rambat:
50 cm / 0,5 s = 100 cm/s